Pulsed power is an enabling technology that offers an innovative solution to a wide range of cutting-edge applications. From automotive manufacturing and food processing to military equipment, medical treatments, and more, these short but powerful electrical pulses continue to find new uses across various industries.
At Stangenes Industries, Inc., we are a leading supplier of electromagnetic products, specializing in providing high-quality pulsed power solutions to customers in industries such as medical, military, research, energy, and more. Our high voltage pulse modulators offer reliability and flexibility for applications requiring longer pulse lengths and higher voltages.
What is Pulsed Power?
The science of pulsed power includes the collection of technology, experimental tools, and capabilities that explore concentrations of electrical energy in time and space and how the harnessing of this energy can be applied to multiple applications. To create high energy pulses, low-power electrical energy is stored in a bank of capacitors and released as short pulses with much higher power. The pulse’s duration is increasingly shortened to billionths of a second long. As the pulse is shortened at a steady pace, the power increases, resulting in a very short but potent burst of energy.
In other words, pulsed power involves the creation of short electrical pulses that are associated with very high electrical power, voltages, and current amplitudes. However, since these pulses involve extreme conditions and only provide mere nanoseconds of operation, they cannot be realized by simple printed circuit boards. Pulsed power must be harnessed by high voltage pulse generators, or Marx Generators, to deliver the necessary power for specific applications.
Harnessing Pulsed Power with High Voltage Pulse Generators (Marx Modulators)
For pulsed power to have practical applications, it must have a place to be stored until released. Marx modulators provide this storage and release capacity. These high voltage pulse generators store electrical energy similarly to a battery in banks of capacitors, though on a much greater scale. Marx modulators’ primary purpose is to generate a high-voltage pulse from a low-voltage supply.
Capacitors that are connected and parallel to one another receive charges similarly and are then discharged in series. The Marx modulator consists of the switches that control the parallel charging and series discharge. The stored voltage is multiplied by the number of stages in the generator circuit to determine the output voltage of the generator.
When the capacitors are supplied by a voltage source, they gain charge at the same rate until they are completely charged, without letting a current pass through. The capacitors are triggered by a high-speed switching action, causing stored energy to release simultaneously or in timed series, creating a voltage that is equivalent to the number of stages in the generator. By delaying the release of energy in consecutive stages, the shape of the output pulse can be matched to the desired load.
The effectiveness of Marx Generators gives them a broad appeal for pulse power applications.
Industry Uses for High Voltage Pulse Generators
While generators have been in use for commercial production for many years, steady technological advances have created systems with much greater output voltage, higher reliability, and more effective computer-controlled diagnostics and parameters. As a result, the range of uses for high voltage pulse generators and pulse modulation continues to increase across many industries and applications, including:
- Low-pressure pseudospark
- Electroporation
- UV light protection
- Dielectric barrier discharge
- Atmospheric pressure plasma jets
- Time of flight
- Beam steering
- Q-switches
- Pockels cells
- Microchannel plates
- Acoustic transducers
- Photomultiplier tubes & image intensifiers
- Industrial plasma generation
- X-ray generation for medical diagnostics and treatments
Stangenes’ innovative approach and dedicated team of experts continue to provide advancements for increasingly cutting-edge applications. Tomorrow’s needs fuel Stangenes’ commitment to research and development both now and in the future.
High Voltage Pulse Modulators from Stangenes
Stangenes continually strives to provide the very best in pulse power through our high voltage pulse modulators and has reached a milestone in researching and developing a parallel boost network that provides droop compensation for long pulse applications. This unit can produce a 3.2 kV/3.2 A pulse with greater than 1% stability while persisting for 3.6 ms. This allows for longer pulse lengths with the reliability and flexibility of solid-state switching modulators and is meant as an integration option for an existing 30-stage, 3.8 MW Marx-modulator.
Stangenes also offers three different modulator configurations and combinations, and all of our Marx modulators feature dynamically adjustable repetition rates, pulse widths, and pulse amplitudes. Our most versatile systems use a solid-state Marx design and can be used with or without a coupled pulse transformer. Our high-voltage pulse modulators provide precision control for the optimized application of pulse power.
Stangenes Industries, Inc. is proud to be registered with DQS Inc. as being in compliance with ISO 9001:2015 standards. This achievement demonstrates Stangenes Industries’ commitment to product and service quality as a leader in pulsed power systems.
Stangenes Industries Drives Innovation
Pulse power harnessed through high voltage pulse generators is an efficient and effective way to provide powerful bursts of energy to benefit many critical applications. The future of Stangenes industries continues to be focused on creating new and innovative designs and developing pulsed power solutions to help solve our customers’ complex challenges.
Our customer base ranges from Fortune 500 firms to start-up companies and everyone in between, and our knowledgeable employees have years of experience to ensure reliable products. To find out how our dedicated team and state-of-the-art technologies can drive your project forward, contact us or request a quote today.
Comments are closed